[시사뉴스 이용만 기자] 서울대병원 연구팀이 인공지능(AI)을 활용해 뇌전증 환자의 발작 빈도 변화를 장기간 분석한 결과, 발작이 빠르게 소실되는 경우부터 치료에도 지속되는 경우까지 서로 다른 다섯 가지 장기 경과 유형이 확인됐다. 이들 경과 유형은 뇌파 검사와 뇌 MRI 소견, 뇌전증의 원인 등에서 뚜렷한 차이를 보였으며, 발병 나이와 질환 지속 기간, 일부 혈액 검사 수치 등 초기 진료 정보와도 연관성을 나타냈다. 서울대병원 신경과 박경일·이상건 교수, 융합의학과 김영곤 교수 및 이대목동병원 황성은 교수로 구성된 공동 연구팀은 2008년부터 2020년까지 뇌전증 클리닉에 처음 내원한 환자 2,586명을 대상으로 임상 양상과 발작 경과를 약 7.6년간 추적한 대규모 코호트 데이터를 분석해 이 같은 결과를 확인했다고 4일 밝혔다. 뇌전증은 뇌 신경세포의 전기 신호 이상으로 반복적인 발작이 나타나는 만성 신경질환으로, 환자마다 치료 반응과 장기 경과가 크게 다르다. 약물 치료로 발작이 조절되는 환자도 있지만, 치료 이후에도 발작이 지속되는 경우가 적지 않다. 기존에는 발작 유형이나 원인을 중심으로 환자를 분류해 왔으나, 이러한 기준만으로는 환자별 장기 발작 경